5,743 research outputs found

    The unsteady flow of a weakly compressible fluid in a thin porous layer. I: Two-dimensional theory

    Get PDF
    We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under the assumption that epsilon=h/l<<1, we show that the pressure field varies only in the horizontal direction away from the wells (the outer region). We construct two-term asymptotic expansions in epsilon in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive analytical expressions for all significant process quantities. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, epsilon, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighborhood of wells and away from wells

    Microstructural and Isotopic Constraints on WL Rim Formation

    Get PDF
    Coordinated microanalyses of Wark-Lovering (WL) rims are needed to best understand their origin and to decipher their subsequent evolution both in the nebular and parent body settings. Here we present the mineralogy, petrology, microstructures, O isotopic compositions, and Al-Mg systematics of a WL rim on a Type B CAI, Big Guy, from the reduced CV3 chondrite Vigarano [1]. Our SEM and TEM study reveals seven distinct mineral layers in the WL rim that include: (1) gehlenite with rare grossite, (2) hibonite, (3) spinel with minor hibonite and perovskite, (4) zoned melilite (k(sub ~0-10)), (5) anorthite, (6) zoned diopside grading outwards from Al,Ti-rich to Al,Tipoor, and (7) forsterite intergrown with diopside. We infer a two-stage history in which WL rim formation was initiated by flash melting and extensive evaporation of the original inclusion edge, followed by subsequent condensation under highly dynamic conditions. The outermost edge of the CAI mantle is mineralogically and texturally distinct compared to the underlying mantle that is composed of coarse, zoned melilite (k(sub ~10-60)) grains. The mantle edge contains finegrained gehlenite with hibonite and rare grossite that likely formed by rapid crystallization from a Ca,Al-rich melt produced during a flash vaporization event [2]. These gehlenite and hibonite layers are surrounded by successive layers of spinel, melilite, diopside, and forsterite, indicating their sequential gas-solid reactions onto hibonite. Anorthite occurs as a discontinuous layer that corrodes adjacent melilite and Al-diopside, and appears to have replaced them [3,4], probably even later than the forsterite layer formation. All the WL rim minerals analyzed using the JSC NanoSIMS 50L are 16O-rich (17O 23), indicating their formation in an 16O-rich gas reservoir. Our data are in contrast with many CV CAIs that show heterogeneous 17O values across their WL rims [5]. Our Al-Mg data obtained using the UCLA ims-1290 ion microprobe of the CAI interior and the WL rim define a well-correlated isochron with (26Al/27Al)(sub 0) = 4.94 10(exp 5), indicating their synchronous formation 5 10(exp 4) years after the canonical CAI value. In contrast, no 26Mg excesses are observed in the WL rim anorthite, which suggests its later formation or later isotopic resetting in an 16O-rich gas reservoir, after 26Al had decayed

    Wearable device to assist independent living.

    Get PDF
    Older people increasingly want to remain living independently in their own homes. The aim of the ENABLE project is to develop a wearable device that can be used both within and outside of the home to support older people in their daily lives and which can monitor their health status, detect potential problems, provide activity reminders and offer communication and alarm services. In order to determine the specifications and functionality required for development of the device user surveys and focus groups were undertaken and use case analysis and scenario modeling carried out. The project has resulted in the development of a wrist worn device and mobile phone combination that can support and assist older and vulnerable wearers with a range of activities and services both inside and outside of their homes. The device is currently undergoing pilot trials in five European countries. The aim of this paper is to describe the ENABLE device, its features and services, and the infrastructure within which it operates

    Two-way coupling of FENE dumbbells with a turbulent shear flow

    Full text link
    We present numerical studies for finitely extensible nonlinear elastic (FENE) dumbbells which are dispersed in a turbulent plane shear flow at moderate Reynolds number. The polymer ensemble is described on the mesoscopic level by a set of stochastic ordinary differential equations with Brownian noise. The dynamics of the Newtonian solvent is determined by the Navier-Stokes equations. Momentum transfer of the dumbbells with the solvent is implemented by an additional volume forcing term in the Navier-Stokes equations, such that both components of the resulting viscoelastic fluid are connected by a two-way coupling. The dynamics of the dumbbells is given then by Newton's second law of motion including small inertia effects. We investigate the dynamics of the flow for different degrees of dumbbell elasticity and inertia, as given by Weissenberg and Stokes numbers, respectively. For the parameters accessible in our study, the magnitude of the feedback of the polymers on the macroscopic properties of turbulence remains small as quantified by the global energy budget and the Reynolds stresses. A reduction of the turbulent drag by up to 20% is observed for the larger particle inertia. The angular statistics of the dumbbells shows an increasing alignment with the mean flow direction for both, increasing elasticity and inertia. This goes in line with a growing asymmetry of the probability density function of the transverse derivative of the streamwise turbulent velocity component. We find that dumbbells get stretched referentially in regions where vortex stretching or bi-axial strain dominate the local dynamics and topology of the velocity gradient tensor.Comment: 20 pages, 10 Postscript figures (Figures 5 and 10 in reduced quality

    A FIB/TEM Study of a Complex Wark-Lovering Rim on a Vigarano CAI

    Get PDF
    Wark-Lovering (WL) rims are thin multilayered mineral sequences that surround most Ca, Al-rich inclusions (CAIs). Several processes have been proposed for WL rim formation, including condensation, flash-heating or reaction with a nebular reservoir, or combinations of these [e.g. 1-7], but no consensus exists. Our previous coordinated transmission electron microscope (TEM) and NanoSIMS O isotopic measurements showed that a WL rim experienced flash heating events in a nebular environment with planetary O isotopic composition, distinct from the (16)O-rich formation environment [6]. Our efforts have focused on CAIs from the CV(sub red) chondrites, especially Vigarano, because these have escaped much of the parent body alteration effects that are common in CAIs from CV(sub ox) group

    A FIB/TEM/Nanosims Study of a Wark-Lovering Rim on an Allende CAI

    Get PDF
    Ca- Al-rich inclusions (CAIs) are commonly surrounded by Wark-Lovering (WL) rims - thin (approx. 50 micrometers) multilayered sequences - whose mineralogy is dominated by high temperature minerals similar to those that occur in the cores of CAIs [1]. The origins of these WL rims involved high temperature events in the early nebula such as condensation, flashheating or reaction with a nebular reservoir, or combinations of these processes. These rims formed after CAI formation but prior to accretion into their parent bodies. We have undertaken a coordinated mineralogical and isotopic study of WL rims to determine the formation conditions of the individual layers and to constrain the isotopic reservoirs they interacted with during their history. We focus here on the spinel layer, the first-formed highest- temperature layer in the WL rim sequence. Results and Discussion: We have performed mineralogical, chemical and isotopic analyses of an unusual ultrarefractory inclusion from the Allende CV3 chondrite (SHAL) consisting of an approx. 500 micrometers long single crystal of hibonite and co-existing coarsegrained perovskite. SHAL is partially surrounded by WL rim. We previously reported on the mineralogy, isotopic compositions and trace elements in SHAL [2-4]. The spinel layer in the WL rim is present only on the hibonite and terminates abruptly at the contact with the coarse perovskite. This simple observation shows that the spinel layer is not a condensate in this case (otherwise spinel would have condensed on the perovskite as well). The spinel layer appears to have formed by gas-phase corrosion of the hibonite by Mg-rich vapors such that the spinel layer grew at the expense of the hibonite. We also found that the spinel layer has the same 16Orich composition as the hibonite. The spinel layer is polycrystalline and individual crystals do not show a crystallographic relationship with the hibonite. An Al-diopside layer overlies the spinel layer, and is present on both the hibonite and perovskite. While the spinel is 16O-rich, WL-rim perovskite and pyroxene are 16O-poor. This isotopic heterogeneity likely reflects O isotopic equilibration of WL-rim perovskite and pyroxene with a planetary O isotopic reservoir after the WL rim formation. The hibonite is zoned and contains wt.% levels of Ti, Mg and Fe in contact with the Fe-bearing spinel (Sp60Hc40) in the WL rim. The Fe enrichment in spinel is likely related to the Na-Fe metasomatism that is ubiquitous in Allende. Conclusions: The petrography and microstructure of the spinel layer in a WL rim sequence shows that it formed by gas phase reactions at high temperature in the nebula. The oxygen isotopic composition of the spinel indicates that this WL rim layer formed in the same (or similar) nebular gas reservoir as the host CAI

    Treatment and outcomes in necrotising autoimmune myopathy: an australian perspective

    Get PDF
    Necrotising Autoimmune Myopathy (NAM) presents as a subacute proximal myopathy with high creatine kinase levels. It is associated with statin exposure, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) antibody, connective tissue diseases, signal recognition particle (SRP) antibody and malignancy. This case series presents our Western Australian NAM patient cohort: comparing the subgroup presentations, biopsy appearance and treatment outcomes. We retrospectively collected data on patients diagnosed with NAM at the Western Australian Neuroscience Research Institute between the years 2000 and 2015. We identified 20 patients with Necrotising Autoimmune Myopathy: 14 with anti-HMGCR antibodies; two with anti-SRP antibodies; three with connective tissue disease; two as yet unspecified. Median creatine kinase level was 6047units/L (range 1000–17000). The statin naïve patients with HMGCR antibodies and patients with SRP antibodies were the most severely affected subgroups, with higher creatine kinase levels, and were more resistant to immunotherapy. Two or more immunotherapy agents were required in 90%; eight patients required IVIG and rituximab. Steroid weaning commonly precipitated relapses. Four patients had complete remission, and the remaining patients still require immunotherapy. Necrotising Autoimmune Myopathy is a potentially treatable myopathy, which can be precipitated by statin therapy and requires early, aggressive immunotherapy, usually requiring multiple steroid sparing agents for successful steroid weaning

    USING COMPUTER VISION AND DEEP LEARNING METHODS TO CAPTURE SKELETON PUSH START PERFORMANCE CHARACTERISTICS

    Get PDF
    This study aimed to employ computer vision and deep learning methods in order to capture skeleton push start kinematics. Push start data were captured concurrently by a marker-based motion capture system and a custom markerless system. Very good levels of agreement were found between systems, particularly for spatial based variables (step length error 0.001 ± 0.012 m) while errors for temporal variables (ground contact time and flight time) were within 1.5 frames of the criterion measures. The computer vision based methods tested in this research provide a viable alternative to marker-based motion capture systems. Furthermore they can be deployed into challenging, real world environments to non-invasively capture data where traditional approaches would fail
    • …
    corecore